A matrix method for finding the minimum or infimum of a polynmial
نویسندگان
چکیده
A method is described for finding the global minimum or infimum of a polynomial in several variables. Both the value of the minimum or infimum is obtained as well as at least one point where the minimum is attained if it is attained. If the minimum is attained in finitely many points, the method finds them all. The method is based on the Stetter–Möller matrix method from the theory of constructive algebra, which translates problems in polynomial algebra into linear algebra problems. The linear algebra techniques that we use are well-known in linear dynamical systems theory.
منابع مشابه
Finding the polar decomposition of a matrix by an efficient iterative method
Theobjective in this paper to study and present a new iterative method possessing high convergence order for calculating the polar decompostion of a matrix. To do this, it is shown that the new scheme is convergent and has high convergence. The analytical results are upheld via numerical simulations and comparisons.
متن کاملAN ALGORITHM FOR FINDING THE EIGENPAIRS OF A SYMMETRIC MATRIX
The purpose of this paper is to show that ideas and techniques of the homotopy continuation method can be used to find the complete set of eigenpairs of a symmetric matrix. The homotopy defined by Chow, Mallet- Paret and York [I] may be used to solve this problem with 2""-n curves diverging to infinity which for large n causes a great inefficiency. M. Chu 121 introduced a homotopy equation...
متن کاملA Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem. At each step of ALS algorithms two convex least square problems should be solved, which causes high com...
متن کاملExtension of Hardy Inequality on Weighted Sequence Spaces
Let and be a sequence with non-negative entries. If , denote by the infimum of those satisfying the following inequality: whenever . The purpose of this paper is to give an upper bound for the norm of operator T on weighted sequence spaces d(w,p) and lp(w) and also e(w,?). We considered this problem for certain matrix operators such as Norlund, Weighted mean, Ceasaro and Copson ma...
متن کاملA method for solving fully fuzzy linear system with trapezoidal fuzzy numbers
Different methods have been proposed for finding the non-negative solution of fully fuzzy linear system (FFLS) i.e. fuzzy linear system with fuzzy coefficients involving fuzzy variables. To the best of our knowledge, there is no method in the literature for finding the non-negative solution of a FFLS without any restriction on the coefficient matrix. In this paper a new computational method is ...
متن کامل